89 research outputs found

    Largest early career scientists workshop on Polar marine research - IMPETUS 2008: Polar Observations and Monitoring

    Get PDF
    Eighty-five young researchers from 20 countries met in Russia to learn about the latest techniques in polar ocean observation and monitoring and to discuss the advantages and limits of various techniques, methods of data transmission, and joint research projects. IMPETUS 2008, the largest workshop ever held for early career scientists in polar marine research, was organized by the Otto Schmidt Laboratory for Polar and Marine Research at the Arctic and Antarctic Research Institute, in Saint Petersburg; the Association of Polar Early Career Scientists; and the Permafrost Young Researchers Network

    Foreword to the thematic cluster: the Arctic in Rapid Transition — marine ecosystems

    Get PDF
    The Arctic is warming and losing sea ice. Happening at a much faster rate than previously expected, these changes are causing multiple ecosystem feedbacks in the Arctic Ocean. The Arctic in Rapid Transition (ART) initiative was developed by early-career scientists as an integrative, international, multidisciplinary, long-term pan-Arctic network to study changes and feedbacks among the physical and biogeochemical components of the Arctic Ocean and their ultimate impacts on biological productivity on different timescales. In 2012, ART jointly organized with the Association of Polar Early Career Scientists their second science workshop—Overcoming Challenges of Observation to Model Integration in Marine Ecosystem Response to Sea Ice Transitions—at the Institute of Oceanology, Polish Academy of Sciences, in Sopot. This workshop aimed to identify linkages and feedbacks between atmosphere–ice–ocean forcing and biogeochemical processes, which are critical for ecosystem function, land–ocean interactions and productive capacity of the Arctic Ocean. This special thematic cluster of Polar Research brings together seven papers that grew out of workgroup discussions. Papers examine the climate change impacts on various ecosystem elements, providing important insights on the marine ecological and biogeochemical processes on various timescales. They also highlight priority areas for future research

    Arctic in Rapid Transition (ART) : science plan

    Get PDF
    The Arctic is undergoing rapid transformations that have brought the Arctic Ocean to the top of international political agendas. Predicting future conditions of the Arctic Ocean system requires scientific knowledge of its present status as well as a process-based understanding of the mechanisms of change. The Arctic in Rapid Transition (ART) initiative is an integrative, international, interdisciplinary pan-Arctic program to study changes and feedbacks among the physical and biogeochemical components of the Arctic Ocean and their ultimate impacts on biological productivity. The goal of ART is to develop priorities for Arctic marine science over the next decade. Three overarching questions form the basis of the ART science plan: (1) How were past transitions in sea ice connected to energy flows, elemental cycling, biological diversity and productivity, and how do these compare to present and projected shifts? (2) How will biogeochemical cycling respond to transitions in terrestrial, gateway and shelf-to-basin fluxes? (3) How do Arctic Ocean organisms and ecosystems respond to environmental transitions including temperature, stratification, ice conditions, and pH? The integrated approach developed to answer the ART key scientific questions comprises: (a) process studies and observations to reveal mechanisms, (b) the establishment of links to existing monitoring programs, (c) the evaluation of geological records to extend time-series, and (d) the improvement of our modeling capabilities of climate-induced transitions. In order to develop an implementation plan for the ART initiative, an international and interdisciplinary workshop is currently planned to take place in Winnipeg, Canada in October 2010

    A pan-Arctic Network integrating past, present and future

    Get PDF
    Arctic in Rapid Transition Implementation Workshop; Winnipeg, Manitoba, Canada, 18–20 October 2010; Rapid transitions in Arctic sea ice and the associated global integrated Earth system impacts and socioeconomic consequences have brought the Arctic Ocean to the top of national and international geophysical and political agendas. Alarmingly, there is a persistent mismatch between observed and predicted patterns, which speaks to the complexity of planning adaptation and mitigation activities in the Arctic. Predicting future conditions of Arctic marine ecosystems for climate change requires interdisciplinary and pan-Arctic characterization and understanding of past and present trends. The Arctic in Rapid Transition (ART) initiative is an integrative, international, interdisciplinary, pan-Arctic network to study spatial and temporal changes in sea ice cover and ocean circulation over broad time scales to better understand and forecast the impact of these changes on Arctic marine ecosystems and biogeochemistry. The ART initiative began in October 2008 and is still led by early-career scientists. The ART science plan, developed after the ART initiation workshop in November 2009, was endorsed by the Arctic Ocean Sciences Board, which is now the Marine Working Group of the International Arctic Science Committee

    Establishing priorities for interdisciplinary Arctic Ocean Science

    Get PDF
    Arctic in Rapid Transition (ART) Initiation Workshop; Fairbanks, Alaska, 7–9 November 2009; The Arctic is undergoing rapid environmental and economic transformations. Recent climate warming, which is simplifying access to oil and gas resources, enabling trans-Arctic shipping, and shifting the distribution of harvestable resources, has brought the Arctic Ocean to the top of national and international political agendas. Scientific knowledge of the present status of the Arctic Ocean and a process-based understanding of the mechanisms of change are required to make useful predictions of future conditions throughout the Arctic region. A step toward improving scientists' capacity to predict future Arctic change was undertaken with the Second International Conference on Arctic Research Planning (ICARP II) meeting in 2005 (http://web.arcticportal.org/iasc/icarp). As the ICARP II process came to a close, the Arctic in Rapid Transition (ART) initiative developed out of an effort to synthesize the several ICARP II science plans specific to the Arctic marine environment

    Past, present, and future : a science program for the Arctic Ocean linking ancient and contemporary observations of change through modeling. A follow-up to the 2nd International Conference on Arctic Research Planning,19-21 November 2007, Potsdam, Germany

    Get PDF
    The Arctic Ocean is the missing piece for any global model. Records of processes at both long and short timescales will be necessary to predict the future evolution of the Arctic Ocean through what appears to be a period of rapid climate change. Ocean monitoring is impoverished without the long-timescale records available from paleoceanography and the boundary conditions that can be obtained from marine geology and geophysics. The past and the present are the key to our ability to predict the future

    Episodic warming of near-bottom waters under the Arctic sea ice on the central Laptev Sea shelf

    Get PDF
    A multiyear mooring record (2007–2014) and satellite imagery highlight the strong temperature variability and unique hydrographic nature of the Laptev Sea. This Arctic shelf is a key region for river discharge and sea ice formation and export and includes submarine permafrost and methane deposits, which emphasizes the need to understand the thermal variability near the seafloor. Recent years were characterized by early ice retreat and a warming near-shore environment. However, warming was not observed on the deeper shelf until year-round under-ice measurements recorded unprecedented warm near-bottom waters of +0.6°C in winter 2012/2013, just after the Arctic sea ice extent featured a record minimum. In the Laptev Sea, early ice retreat in 2012 combined with Lena River heat and solar radiation produced anomalously warm summer surface waters, which were vertically mixed, trapped in the pycnocline, and subsequently transferred toward the bottom until the water column cooled when brine rejection eroded stratification

    Ocean Colour remote sensing in the Southern Laptev Sea: evaluation and applications

    Get PDF
    Enhanced permafrost warming and increased arctic river discharges have heightened concern about the input of terrigeneous matter into Arctic coastal waters. We used optical operational satellite data from the Ocean Colour sensor MERIS onboard the ENVISAT satellite mission for synoptic monitoring of the pathways of terrigeneous matter in the southern Laptev Sea. MERIS satellite data from 2006 on to 2011 were processed using the Case2Regional Processor, C2R, installed in the open-source software ESA BEAM-VISAT. Since optical remote sensing using Ocean Colour satellite data has seen little application in Siberian Arctic coastal and shelf waters, we assess the applicability of the calculated MERIS parameters with surface water sampling data from the Russian-German ship expeditions LENA2010 and TRANSDRIFT-XVII taking place in August and September 2010 in the southern Laptev Sea. The surface waters of the southern Laptev Sea are characterized by low transparencies, due to turbid river water input, terrestrial input by coastal erosion, resuspension events and, therefore, high background concentrations of Suspended Particulate Matter, SPM, and coloured Dissolved Organic Matter, cDOM. The mapped calculated optical water parameters, such as the first attenuation depth, Z90, the attenuation coefficient, k, and Suspended Particulate Matter, SPM, visualize resuspension events that occur in shallow coastal and shelf waters indicating vertical mixing events. The mapped optical water parameters also visualize that the hydrography of the Laptev Sea is dominated by frontal meanders with amplitudes up to 30 km and eddies and filaments with diameters up to 100 km that prevail throughout the ice-free season. The meander crests, filaments and eddy-like structures that become visible through the mapped MERIS C2R parameters indicate enhanced vertical and horizontal transport energy for the transport of terrigenous and living biological matter in the surface waters during the ice-free season

    Lena Delta hydrology and geochemistry: long-term hydrological data and recent field observations

    Get PDF
    The Lena River forms one of the largest deltas in the Arctic. We compare two sets of data to reveal new insights into the hydrological, hydrochemical, and geochemical processes within the delta: (i) long-term hydrometric observations at the Khabarova station at the head of the delta from 1951 to 2005; (ii) field hydrological and geochemical observations carried out within the delta since 2002. Periods with differing relative discharge and intensity of fluvial processes were identified from the long-term record of water and sediment discharge. Ice events during spring melt (high water) reconfigured branch channels and probably influenced sediment transport within the delta. Based on summer field measurements during 2005–2012 of discharge and sediment fluxes along main delta channels, both are increased between the apex and the front of the delta. This increase is to a great extent connected with an additional influx of water from tributaries, as well as an increase of suspended and dissolved material released from the ice complex. Summer concentrations of major ion and biogenic substances along the delta branches are partly explained by water sources within the delta, such as thawing ice complex waters, small Lena River branches and estuarine areas
    • …
    corecore